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Introduction through the Burgers Equation, II

Theory for general scalar conservation laws (Krushkov theory
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Riemann Problems (Lax Theory)

Glimm Theory and Random Choice method
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Front tracking method and Continuous dependence

Uniqueness of viscosity solutions

Large time asymptotic behavior of solutions

Selected topics in multi-dimensional theory:

Non-uniqueness results;
Singularity-formation;
Boundary-value problems.
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§1. Compressible flows and Euler Systems
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§1. Compressible flows and Euler Systems

The macro-scopic description of compressible fluids in Newtonian

mechanic is given by

Euler system



∂t ρ+ div(ρ~u) = 0

(conservation of mass)

∂t(ρ~u) + div(ρ~u× ~u) +∇p = ρF

(conservation of momentum)

∂t(ρE) + div(ρ~uE + ρ~u) = ρF · ~u
(conservation of energy)



§1. Compressible flows and Euler Systems

where:

ρ : density

~u : velocity

e : internal energy

E : total energy

p : pressure

F : external force

Equation of state: p = p(e, ρ)



§1. Compressible flows and Euler Systems

This is the well-known compressible Euler system, which is one of

the most important systems of hyperbolic conservation laws. One

of the most fundamental issues in the mathematical theory of

macro-scopic compressible fluids is to understand the global

well-posedness of solutions to the Euler system. This has been the

driving force for the mathematical theory of nonlinear hyperbolic

conservation laws, which has remained to be one of the biggest

challenges in the theory of nonlinear PDEs especially in multi-space

dimensions.



§1. Compressible flows and Euler Systems

Basic Features: Discovery of Bernard Riemann

The speeds of the propagation of a sound wave with finite

amplitude depend on the sound wave itself ⇒

Formation of Shock Waves & Rarefaction Waves



§1. Compressible flows and Euler Systems

This forces one to deal with the following issues:

Weak solutions;

Uniqueness and entropy conditions;

Dissipations and wave interactions;

Regularities and structure of solutions;

etc.



§1. Compressible flows and Euler Systems

Some Simplified Models of Euler Equations

(1) Planary waves by weakly nonlinear geometric optics ⇒
Burgers equation

∂t u+ ∂x(
u2

2
) = 0

Fact: Many important nonlinear phenomena can be explained

by the Burgers equation!!

(2) Propagations of infinitesimal sound waves ⇒ Wave equation

∂2t p− c2∆p = 0

with c being constant.
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(3) Steady flow equations
div(ρ~u) = 0

div(ρ~u⊗ ~u) +∇p = 0

div(ρ~uE + ~up) = 0

Basic feature:

mixed type PDEs;

change-type and degenerate PDEs.



§1. Compressible flows and Euler Systems

Two important particular cases:

(3.1) Steady Potential Flow equations:

steady + isentropic + irrotational ⇒

~u = ∇φ

N∑
i=1

((∂iϕ)2 − c2(|∇φ|))∂2i φ+ 2
∑

1≤i≤j≤N
∂iϕ∂jφ∂

2
ijφ = 0

with c2(ρ) = p′(ρ) (c: sound speed) and Bernoullis law:
1

2
|∇φ|2 + h(ρ) = c0 with enthalpy h defined as

h′(ρ) =
c2(ρ)

ρ
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Basic Feature:

The potential equation is


hyperbolic if M > 1 (supersonic)

elliptic if M < 1 (subsonic)

parabolic if M = 1 (sonic)

here M =
|~u|
c

is the Mach number of the flow.

Remark:

This is one of the most interesting change-type degenerate PDEs.
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(3.2) Two-dimensional isentropic steady flows:
∂x(ρu) + ∂y(ρv) = 0

∂x(ρu2) + ∂y(ρuv) + ∂x p = 0

∂x(ρuv) + ∂y(ρv2) + ∂y p = 0

The characteristic speeds of this system are: λ1 =
v

u
,

λ± =
uv ± c(ρ)

√
u2 + v2 − c2(ρ)

u2 − c2

The system is


hyperbolic if M > 1 (supersonic)

hyperbolic + elliptic if M < 1 (subsonic)

degenerate if M = 1 (sonic)
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(4) Incompressible Euler System

As the Mach number M =
|~u|
c
� 1, then the compressible

Euler system is approximated by the incompressible Euler

system  ∂t~u+ div(~u⊗ ~u) +∇p = 0

div ~u = 0

which is the basic model for incompressible fluid dynamics:

hyperbolic-elliptic coupled system;

2-dimension theory is satisfactory;

3-D global well-posedness theory is open.
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Bernhard Riemann (1826-1866) 



§2. Contributions of Riemann and Riemann Problems

Before Riemann, most scientists studied the propagation of

infinitesimal sound waves, which are governed by the linear wave

equation, which says that the sound waves propagates on

characteristic surfaces with constant speeds. Thus the form of

solutions will not change and there is no finite time singularity

formation from a smooth initial profile. In his 1860 paper:

Verber die Fortflazung ebener Luftwellen von endlicher

Schwingunqsweite, Gött. Abh. Math. C1, 8(1860), 43-65.

Riemann was the first one to study the propagation of sound waves

of finite amplitudes.
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Riemann’s Discoveries

An initial distance of finite amplitude splits two opposite waves

with moving speed u+ c(ρ) and u− c(ρ) respectively, where u is

the fluid velocity and c(ρ) the local sound speed. Furthermore, the

dependence of the propagation speed u± c(ρ) on the density leads

to the compression and expansion of the sound waves. These yield

formation of shock waves and rarefaction waves. He also

discovered Riemann Invariants.

In fact, Riemann solved the following one-dimensional

shock-tube problem for the one-dimensional isentropic Euler

system:



§2. Contributions of Riemann and Riemann Problems

 ∂t ρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p(ρ)) = 0

(ρ, u)(t = 0, x) =

 (ρ−, u−), x < 0

(ϕ+, u+), x > 0

where (ρ−, u−) and (ρ+, u+) are constant states.
 

(𝜌−, 𝑢−) (𝜌+, 𝑢+) 

x = 0 

Riemann Problem 



§2. Contributions of Riemann and Riemann Problems

Remark: Since the compressible Euler system is dialation invariant,

so the solutions to the Riemann Problem are self-similar solutions

of the compressible Euler equations. In 1-dimension, such solutions

are not only building blocks of general solutions, but also govern

both local and large time behavior of physical weak solutions. So

Riemann’s discoveries and his problem are essential for the birth of

mathematical theory of shock waves for general hyperbolic

conservation laws.



§3. Progress in 1-dimensional Space

B. Riemann (1860): for Isentropic Euler:

− Riemann Problem;

− Nonlinear hyperbolic waves.

Many studies for Riemann Problems for general Euler system

and for some practical problems, see Courant-Friedrich’s

(1948).

E. Hopf (1950): for Burger’s equation:

− Entropy condition (viscosity criteria);

− Dissipation mechanism due to nonlinearity

⇒ cancellation of shock and rarefaction waves

⇒ decay of solutions

⇒ N-wave!



§3. Progress in 1-dimensional Space

 

𝑂(√𝑡) 

𝑂(𝑡−
1
2) 

𝑂(𝑡−
1
2) 

rarefaction wave 

x 

u (x, t) 

Hoft-Lax-Oleinik formula.

Formation of shocks

P. Lax, Fritz John, Liu.
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Loss of uniqueness and entropy conditions:

− Viscous criteria (E. Hopf, Oleinik, Gelfand, Smoller, etc.)

− Lax’s geometrical condition ⇔ structural stability condition

− Physical entropy criteria: the physical entropy increases across

shocks.

· · ·

Fact: All of these criteria are equivalent for weak waves!

The general Riemann problem is completely solved uniquely

by P. Lax in 1957.

Discovery of the suitable solution space:

BV: space of bound total variation

Glimm, Smoller-Conway, Volport, etc.



§3. Progress in 1-dimensional Space

Global existence of entropy weak solution with small total

variation in BV by Glimm in 1968.

Key ideas:

Riemann solutions are building blocks

Wave interactions and Glimm’s interaction functional ⇒ A

priori total variation estimates ⇒ convergence

random choice method ⇒ consistency

Structure and Asymptotic behavior of BV solutions (and linear

and nonlinear stability of basic waves).



§3. Progress in 1-dimensional Space

Key ideas:

Riemann’s Discovery of propagation speeds depending on waves

+ entropy conditions

⇒ shock waves must interact with rarefaction waves

⇒ cancellation must occur

⇒ decreasing of wave strength

⇒ decay to Riemann solutions



§3. Progress in 1-dimensional Space

Glimm-Lax (1971)

|u(x, t)− ū|L∞[0,T ] ≤
CL

t

u(x, t) is periodic weak entropy solution with period L. The

fundamental paper along this line.

Key tools: Riemann Invariants.

Diperna: structure of BV solutions: see the entropy BV

solution locally is a small perturbation of Riemann solution

(1970’s)

Diperna, Liu, Dafermos.

Asymptotic stability of linear and nonlinear waves.



§3. Progress in 1-dimensional Space

Conclusion: The Riemann solutions determine the asymptotic

behavior of a general entropy satisfying BV solutions both locally

and globally.

Uniqueness and continuous dependence of viscosity weak

solutions, Bressan 2001.

Basic Idea:

local behavior as Riemann’s solution

weighted comparison nonlinear functional



§3. Progress in 1-dimensional Space

Viscous approximation of the Euler system, uniform BV

estimates and vanishing viscosity limits (artifical viscosities),

Bressan-Bianchini, 2003-2009.

Existence of entropy weak solutions with arbitrary amplitudes

to the isentropic Euler equations (2× 2 system) and theory of

compensated compactness:

Tartar, Diperna, Serre, Ding, P. L. Lions, · · ·

Summary: One-dimensional theory is almost complete and

satisfactory.



§3. Progress in 1-dimensional Space

Major open problems in 1-dimension:

1. Global existence and large time behavior of entropy weak

solutions to the full Euler system with periodic initial data?

See Qu-Xin 2015 (ARMA)

2. Uniform BV estimates for the compressible Navier-Stokes

system and vanishing viscosity limit to the Euler equations?

3. Fine regularity and generic structure of general entropy weak

solutions for 1-d-systems.



§4. Challenges in Multi-Dimensional Shock Wave Theory

Theory for scalar equation is complete;

Local well-posedness of smooth solution based on

entropy-variables (Friedriches-Lax, Kato, etc., 1950’s); Cauchy

problem, IBVP (Kreiss Theory);

Shock formation: Christodoulou-Miao (2014), Alihanc

(1990’s); Sideris, etc.;

Local existence of non-planary elementary waves (1980’s, A.

Majda, Meltivier, etc.)

Physically important wave patterns;

Vacuum dynamics.



§4. Challenges in Multi-Dimensional Shock Wave Theory

Difficulties and Challenges:

Riemann Problems are not fundamental as in 1-D.

BV spaces are not suitable for the global existence of entropy

weak solutions in Multi-dimensional! (1983, J. Rauch)

In general, L∞-entropy weak solutions are not unique:

− Existence of infinitely many L∞-entropy weak solutions for the

multi-dimensional isentropic Euler system with shock data (De

Lellis-Szèkelyhidi (2009-2010), Chiodaroli-De Lellis-Kreml

(2014))
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− Structure of such “wild” solution. These wild solutions can be

highly oscillatory, indeed, such a solution could take only 5

states (in 2-dimensional), and 9 states (in 3-dimensional). So

the solution can be everywhere discontinuous (Luo-Xie-Xin,

2015).

− Such wild solutions cannot be ruled out by other physical

effects such as rotations or dampings (Luo-Xie-Xin) or heat

conduction (Feireisl) or surface tension

(Feireisl-Marcati-Tonelli), or even partial viscosities (Luo).
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Remarks:

1. Such a wild solution is constructed by the method of convex

integration which depends crucially on the lower regularity of

the solution space and the high space dimensionality!

2. In L∞-space, the “wild” solution satisfies most of the known

entropy criteria except the “vanishing viscosity criteria”.

One of the main open questions:

Find a better space (than L∞), such that the uniqueness is

obtained for those weak solutions under only the physical entropy

condition.
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Some Progress on Special Physically Relevant Flow Patterns

1. Subsonic Flows past a solid body

 

irrotation steady flows: almost done!

Bears, Gilberg, Shiffmann, Dong, · · · , (1950’s)

rotational steady flows: symmetric body (2015),

Chen-Du-Xie-Xin, open in general.
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2. Supersonic flows past a solid body

 



§4. Challenges in Multi-Dimensional Shock Wave Theory

2D wedge problem: many results

 
shock 
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3D steady problem: irrotational flow:

 

supersonic shock 

Chen, Chen-Xin-Yin, Yin

Instability of transonic shock (Yin, Xu-Yin)
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3. Instability of smooth transonic flows
 

sonic curve supersonic 

subsonic 

C. Morawetz (1950’s): such a wave pattern is unstable!!

Open Problem: Piecewise smooth transonic flows with shocks past

a solid body?
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4. Shock Reflection Problems (Riemann Problem)

 

𝜶 

supersonic shock 

Various possibilities
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RR

 

supersonic 

Transonic shock 

supersonic 

Von. Neumann (1930’s), Courant-Friedrich’s (1940’s),

Morawetz (1980), Chen-Feldman (2010), Valker-Liu (2008).
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MR: open

 

• DMR etc.
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Remarks: All the important cases here are open due to

free-boundaries;

mixed-type PDE;

strong degeneracy;

strong nonlinearities;

complex geometry, etc.
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5. Smooth subsonic steady flows in a nozzle

 

m: mass flux 

• irrotational: L. Bers, Xie-Xin (2007)

• rotational: Xie-Xin (2010), etc.
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6. Supersonic flows in a nozzle, very complicated reflection

patterns

 

3-d: open!
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7. Smooth transonic steady flows:

Meyer type flow

 

subsonic supersonic 

sonic 

Major difficulties: strong degeneracy at the sound curve which

is free in general!
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Wang-Xin (2014): irrotational flow

 

vacuum 

vacuum 

subsonic supersonic 

sonic line 
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Taylor’s type flows

 

subsonic supersonic 

C. Morawetz: such a flow is unstable
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How about

 

transonic shock 

supersonic subsonic unstable → 
 
 
 
 
 
 

stable → supersonic subsonic 

sonic 
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8. Transonic shocks in a de Laval nozzle:

Courant-Friedrich’s Problems (1948): Motivated by

engineering studies, Courant-Friedrichs proposed the following

problem on transonic shock phenomena in a de Laval nozzle:

r0, (q0, 0, 0) 

pe
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Summary of Major Results:

Solved for expanding cone by Courant-Friedrich (1948).

Ill-posedness by potential flows (Xin-Yin, 2005-2007).

For modified potential flow, the problem is well-posed in 3-D

by Bae-Feldman, 2010.

Completely solved in 2D by Li-Xin-Yin, 2009-2013.

Dynamical stability for symmetric flows (Xin-Yin,

Rauch-Xie-Xin).
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Remarks:

As for the shock reflection problem, all the major difficulties

there are present here except the strong degeneracy of sonic

state. One of the key difficulties is that in the subsonic region,

the governing system is mixed type (elliptic + hyperbolic), so

the possible loss of regularity due to hyperbolic models is

essential! This is the main reason that the problem is still

open in 3-dimension!
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Even in 2-dimension, an important physically interesting

pattern is

 

subsonic 

sonic curve 

supersonic 

transonic shock 

subsonic  Pe 

which is open!!
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Thank You!
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